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Abstract

A new analytical solution for a piezoelectric plane with an elliptical void is derived by removing the commonly held
assumptions that the void boundary is impermeable and a void axis is perpendicular to the poling direction. The
approach of Lekhnitskii’s complex potential functions is used in the derivation. Applicability of the common practice of
reducing a void solution to a crack solution is examined. It is shown that a recently reported solution for exact electric
boundary conditions is actually the well known solution for a permeable crack. A unified formulation for plane cracks
containing air or vacuum is then developed to account for different electric boundary conditions. Crack closure is taken
into consideration in the analysis. The influence of electric boundary conditions and crack orientation on fracture
parameters is discussed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Park et al. (1998) observed that service performance of piezoceramics is degenerated by void-like defects.
The study of defects (voids, cracks, etc.) in piezoelectrics is therefore necessary to understand the failure
mechanisms of such materials. By assuming an electrically impermeable boundary, Sosa (1991) examined
stress concentration around an elliptical hole. Sosa and Khutoryansky (1996) revisited an identical problem
by removing the assumption of an impermeable boundary. An elliptic axis was taken to be perpendicular to
the poling direction in above studies. Xu and Rajapakse (1999) presented an analytical solution for an
arbitrarily oriented elliptical void by assuming an electrically impermeable boundary.

A number of researchers examined crack problems in plane piezoelectrics (e.g. Parton, 1976; Suo et al.,
1992). However, there are conflicting views on some key issues. For example, different electric boundary
conditions have been proposed for cracks containing air or vacuum. Polovinkina and Ulitko (1978) and
Mikhailov and Parton (1990) used a permeable crack model, which assumes the continuity of electric
potential and the normal component of electrical displacement across the crack faces. Suo et al. (1992)
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argued that this condition is not realistic, as there is an electric potential drop across the crack. Deeg (1980)
proposed an impermeable crack model, i.e., the vanishing of normal electric displacement on the crack
faces. Pak (1990) provided arguments for the validity of Deeg’s model. Dunn (1994), Zhang and Tong
(1996) and Zhang et al. (1998) examined the crack face boundary conditions by studying an elliptical void.
By taking the limits of a void, Zhang and Tong (1996) and Zhang et al. (1998) discussed the effects of crack
geometry and permittivity. They found that different limits of governing variables result in different crack
face conditions. Hao and Shen (1994) proposed a new electric boundary condition by considering the
electric permeability of air or vacuum in a crack.

Pak (1992) showed that an electric field generally impedes crack growth based on the criterion of total
energy release rate. Employing the criterion of strain energy release rate, Park and Sun (1995a,b) reported
that a positive electric field reduces the fracture load, and a negative one increases it. Kumar and Singh
(1996), by using the criterion of maximum hoop stress, reported that cracks propagate less under a positive
electric field and more under a negative field. Contradictory experimental findings about the effect of an
applied electric field are reported in literature (Singh and Wang, 1995; Park and Sun, 1995a).

Coordinated experimental studies are needed to understand the real electric boundary condition on
crack faces and to clarify the role of an applied electric field. Past theoretical studies exclusively assumed
that a crack is perpendicular/parallel to the poling direction or has impermeable crack faces. In addi-
tion, limited knowledge exists on the dependence of fracture parameters on crack orientation and electric
boundary conditions. The present study is also motivated by a recent study (Gao and Fan, 1999) where it is
claimed that the solution for a plane crack under exact electric boundary conditions is given, and the need
to closely examine the electric boundary conditions proposed by Hao and Shen (1994).

A new analytical solution for a piezoelectric plane containing an arbitrarily oriented and permeable
elliptical void is first established to obtain a unified formulation for crack problems under different electric
boundary conditions. Applicability of common practice of reducing void solutions to crack solutions is
discussed. An alternative approach is utilized to develop a formulation which accounts for an arbitrary
crack orientation and different boundary conditions. Numerical results are presented to show the influence
of different electric boundary conditions and crack orientations on fracture parameters such as field in-
tensity factors, energy release rates and crack tip hoop stress. It is shown that the solution of Gao and Fan
(1999) is actually the previously known solution for a permeable crack, and the solution of Hao and Shen
(1994) reduces to the solution of an impermeable or a permeable crack under practical situations.

2. Arbitrarily oriented elliptical void

Consider an infinite piezoelectric plane polarized in the z'-direction and containing an elliptical void as
shown in Fig. 1. The orientation of the void (z-axis of xz system) with respect to the poling direction is
arbitrary and denoted by angle . The homogeneous domain inside the void may be vacuum or air. The
void is free of electric charges, and no free charges exist on the piezoelectric—void interface.

Assuming plane stress or plane strain conditions, the constitutive equations in the xz system can be
expressed as,

Exx ap  ap ap Oxx bii by D

€ = | an axn ax 02 p+ | b2 bn { DX }

2¢,. apiz  dx  asz Oxz biz by ’ (1)
Oxx

{Ex}__(bll bi» b13) - +(d11 dlZ){Dx}
E, by byn by - diy dpn /) \D:
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Fig. 1. An arbitrarily oriented elliptical void.

where ¢;, 6;, D; and E; (i,j = x,z) denote the strain tensor, stress tensor, electric displacement in the
i-direction and electric field in the i-direction, respectively. Coefficients a;;, b; and dj; are two-dimensional
elastic, piezoelectric and dielectric constants, respectively (Xu and Rajapakse, 1999). These coefficients are
different for plane stress and plane strain cases, and are functions of material constants in Eq. (A.1) and
void orientation angle . The material properties of piezoceramics PZT-4 and PZT-5H are given in
Appendix A.

The general solutions for plane piezoelectrics can be expressed as,

3
{u)m U, ¢}T =2Re Z{pm ansn}T(p;z(Zn)
n=1

3
{00,000} =2Re > {1, —1,} ¢, (z,)
n=1
2

3
{D,, D} =2Re) {0u,, 0.} ), (z)
n=1

3
{Exa EZ}T = —2Re Z{S,,, tn}T(/):z(Z”)
n=1

where u,, u. and ¢ denote displacements in the x-, z-directions and electric potential, respectively; a su-
perscript T denotes transpose of a vector; z, = x + u,z where y, (n =1,2,3) are the roots of Eq. (A.2);
¢,(z,) are complex potential functions; Re denotes the real part of a complex-valued quantity; a prime (')
denotes differentiation with respect to the corresponding argument; J,, p,, q., s, and ¢, defined by Eqgs.
(A.3)-(A.7) are complex constants that depend on material properties and void orientation angle.

Air or vacuum inside the void is governed by Maxwell’s equation, electric constitutive equations and
electric field—potential relations. Let ¢, denote the dielectric permittivity of the medium inside the void,
then,

DL=0;  Di=eE: E =4 (3)

1 N

where a superscript v is used to denote quantities associated with the void.
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The general solutions for an dielectric medium governed by Eq. (3) can be expressed as,

¢V = 2Im[¢(z\/)]
D} = —2¢,Im[/(z,)]; Z = —2¢,Re[}/(2,)] (4)
Ey = =2Im[y/(z,)]; = —2Re[y/(zy)]

where (zy) is a complex function with z, = x + iz, Im denotes the imaginary part of a complex-valued
quantity.
Assume uniform electroelastic loading 62, 627

zz”

>, and DY, DX (or EY, EX) applied at far field (Fig. 1).
Alternatively, the loading can be expressed as ¢2°, ¢2°, ¢%° and D, D under the xz system. Let n (n,,n.)

denote the outward unit normal of the void boundary. The followmg equations hold on the void boundary
(i.e. piezoelectric—void interface).

Oty + 0N, = 07 O Ny + 00, = 0 (5)

D, =D}; ¢=¢" (6)

Note that the continuity of electric potential is equivalent to the continuity of tangential component of
electric field.

The potential functions ¢,(z,) (n =1,2,3) in Eq. (2) and ¥/(z,) in Eq. (4) are determined such that the
prescribed boundary conditions are satisfied. The derivation can be carried out by following Sosa and
Khutoryansky (1996) who considered the special case of = 0.

Alternatively, Chen and Lai (1997) showed that the electroelastic field inside a plane inhomogeneity is
uniform under uniform far-field loading. Let uniform electric fields and electric displacements inside a void
are denoted by E?, E? and D?, D?, respectively. Eq. (6) can be rewritten as

D,=Dn.+Dn;;  =—-EXx—E:z (7)

The problem now reduces to determining the three unknown complex functions ¢,(z,) (n =1,2,3) in
Eq. (2) and D, D? (or E?, E?). Construct ¢, in the form of

o0

a™
©,(z,) =z, + (/)S(zn); with q)n = Z Lk 8)

k=0

where ¢, are complex constants, and ¢’(z,) are holomorphic functions up to infinity with complex con-
stants a'".

Introduce the following mapping functions that map the exterior of an ellipse in the z, plane into the
exterior of a unit circle in the &, plane (Lekhnitskii, 1963).

a—iu,b
Z, =
2

a+ipb 1
2 g,
The functions ¢’(z,) and constants ¢,, D° and D? can be obtained by applying far-field loading condi-

tions and interface conditions given by Egs. (5) and (7). Detalils of the derivation are omitted for brevity.
The final results are given below.

&+ )

Zy — /22 — (a® + 12b?)
a+ip,b

(p?,(zn) - (Alel + An2Q2 + An3Q3); (l’l = 17 27 3) (10)

where
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Ay A A 1 P03 — 1302 Oy — O3 i3 — Iy
Ay Ap Ay | = I 3Oy — 03 O3 — 61 py — s

Az Ay Az W02 — 01 01— 0r fy — Iy
A=y (02 — 03) + 1,(63 — 01) + p3(01 — 62) (11)
_acy . bo¥ _aoy . boy _a(DX —-DY) .b(D¥—DY)
Oi=-7Fimm Q=mrEoigh O=——s i (12)

Electric displacements D? and D? are determined from,

aRe{4,}D" + (bIm{4,} + a/e,)D" = 2Re{4,} + aE>X + aRe{4,}D + bIm{4,} D

13
(alm{4,} — b/e,)D? — bRe{4,}D° = 2Im{4,} + bE® + alm{4,}D> — bRe{4,} D (13)
where
3 3
Ay =— ZSn/ln3; Ay = — an(/llel + 4,20,)
n=1 n=1
and ¢, can be determined from
3 3
- aRe{c,} +ibRe{c,u,} = O1; - ZaRe{cn,un} +ibRe{c 2} = Os
n=1 n=1
(14)

3
_ aRe{cnén} + ibRe{cnénun} = Q3

n=1

Note that only five independent equations exist in Eq. (14), and one of the six unknowns in ¢, is set to
zero without loss of generality.
Complex functions ¢,(z,) and ¢/,(z,) are now completely determined as

zy, — /22 — (a* + p2b?)

n) = Cn<n An An An .
@,(2n) = Cozn + (A Q1 + 4,202 + 4,305) a T inh

(15)

, 1 Zp
an(Zn) = Cy + (Anl Ql + AnZQZ + A;13Q3) a + 1'[,[ b {1 - Z2 — (a2 + 'quZ) } (16)

Substitution of Egs. (15) and (16) into Eq. (2) yields the complete solution for electroelastic field. With
DY and D? known, the electroelastic solution within the void is also completely known. Restrictions on the
void orientation (ff = 0) and the void boundary conditions (e.g. impermeable boundary) have been re-
moved in the present derivation.

3. Crack solution and fracture parameters

It is a common practice to deduce the solution for a crack from a void solution by setting b = 0. Using
Egs. (12) and (15), the complex functions ¢, (z,) for the crack problem shown in Fig. 2 can be obtained as

Pu(20) = Cazn — 5= (zn —\/z - az) (17)

where
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Fig. 2. An arbitrarily oriented crack.

h,,:\/E[A,,]G;O—/1,,20';;—/1”3(D;C—D?)]; n= 17273
and D" is obtained from Eq. (13) as,

_Im th:l Sy(=An 02 + A,p02)
> 5,4,

Eqgs. (17) and (18) based on the void solution indicate that remote electric loading has no influence on
crack problems. For the special case of f§ = 0°, Gao and Fan (1999) made the same observation by setting
b = 0 in their void solution. They concluded that such a solution is exact with respect to electric boundary
conditions and should be used when solving fracture problems in piezoelectric materials.

The applicability of above reduction should be examined. In the case of elastic solids, such a reduction is
reliable since the crack boundary conditions are consistent with the void boundary conditions (vanishing
tractions). However, when dealing with piezoelectric solids such a reduction has to be carefully applied.
When letting b = 0, the air phase physically vanishes. Consequently, the following continuities of electrical
potential and normal electric displacement across the crack faces are automatically established.

DI =D;; ¢"=¢ (19)

where the superscripts + and — indicate the upper and lower crack surfaces, respectively.

Cracks described by Eq. (19) are referred to as permeable cracks in literature. This type of crack face
electric conditions were initially proposed by Polovinkina and Ulitko (1978). In fact, Eq. (19) implies that a
crack has no impact on the electric field. Therefore, in contrary to the conclusion of Gao and Fan (1999),
the crack solution given by Eq. (17) is not the solution for exact electric boundary conditions. It yields the
already known solution for a permeable crack as shown in the sequel.

Zhang and Tong (1996) presented an interesting discussion on reducing void solutions to crack solu-
tions. They introduced two dimensionless parameters (functions of crack geometry and permittivity) to
examine different limit solutions. It was found that permeable cracks and impermeable cracks correspond
to two different limiting cases. Such a scheme, however, is not utilized here. This study aims at closely
examining three existing crack models including a permeable crack, an impermeable crack and a Hao and
Shen type crack.

Deeg (1980), Pak (1992) and Suo et al. (1992) assumed that crack faces are impermeable, i.e.

Df=D; =0 (20)

DO

z

+ D> (18)

Hao and Shen (1994) argued that neither Eq. (19) nor Eq. (20) could avoid being one-sided. By con-
sidering the electrical permeability of air or vacuum in a crack, they proposed the following electric con-
ditions on crack faces.
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Dz 7Dz7 Dz("lZi]’lZ)*'gV((rZs 7(15) (21)

For the special case of ¢, = 0, i.e. a medium having zero permittivity, Eq. (21) reduces to the conditions for
an impermeable crack. If potential jump (¢ — ¢7) is zero, Eq. (21) reduces to the case of a permeable
crack. The influence of crack face conditions expressed by Eq. (21) on fracture parameters is not clear from
the analysis given by Hao and Shen (1994). Limited numerical results given by them shed little insight into
the effects of Eq. (21).

A unified formulation that accounts for different electric boundary conditions (Egs. (19)—(21)) is de-
veloped in the present study for an arbitrarily oriented crack. This new solution allows the theoretical
treatment of cracks in piezoelectrics by using a single analysis. The three types of electric boundary con-
ditions commonly assume that the normal electric displacement is continuous across the crack faces. The
electric field has been shown uniform (special case of an elliptical void) under uniform loading. Therefore,

Df =D =D (22)

where D! is a constant.
Following relations can be obtained by using Egs. (2) and (22) and vanishing tractions on crack faces.

3 3 3
2Re) 9,(x)=0;  2Re> w,p,(x)=0;  2Re ¢,(x) = —Dix (23)
— n=1 n=1

where x is along the crack line (—a <x < a), and the complex functions ¢, (n = 1,2,3) are in the form of

Eq. (8).
Applying the mapping of Eq. (9), ¢,(z,) identical to Eq. (17) are obtained. Crack tip fields can be ex-
pressed by using the polar coordinate system (r,6) in Fig. 2 as,

{ue(r, 0), u.(r,0), p(r, 0 \/"ReZ{pn,qn,sn} ho\/cos 0 4 u, sin 0

hy

\/cos8+ p,sin0

{JXX(V’ 0)’ Gzz(rv 0)7 ze(}", 9)}T = \/iReZ{:uiv 17 _:un}T

hy

\/cost + p,sind

hy

1
(B0 E0) = - - Z{Smf} Joos 0+ o sim0

Eq. (24) implies that classical inverse square root type singularity exists for stresses and electric dis-
placements irrespective of the crack orientation angle and the type of electric boundary conditions.

Crack opening displacements (COD) and the jump of electric potential along the crack line (—a <x < a)
can be obtained as,

{Dy(r,0),D.(r,0)}" = ReZ{anun, —5,}"

3
uf —u, = -2V@ =2 Im Y p,[A10% — 403 — A,a(DF — DY)
n=1

3
wf —u; = =2V@ =2 Im Y _ g, (4,102 — 4,20 — A,3(D® = DY)] (25)
n=1

3
Pt — ¢ =2V = Im Y s, [An0Z — Aoy — A(DF — DY)
n=1
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The problem now reduces to determining the constant D°. An additional condition other than Eq. (22)
must be considered. Apparently, this condition comes from Eqgs. (19)—(21) for permeable, impermeable and
the Hao and Shen type cracks, respectively.

For an impermeable crack, substituting D? = 0 into Eq. (24) yields the complete electroelastic fields.

For a permeable crack (Eq. (19)), D? is obtained by vanishing of the electric potential jump expressed by
Eq. (25). The result is identical to D? given by Eq. (18). Therefore, the exact solution claimed by Gao and
Fan (1999) is indeed the solution for a permeable crack.

For a Hao and Shen type crack, the following solution for D can be obtained by using Egs. (21) and
(25).

(D — DY)

z

DO = —¢ Im Z'31:1 Sn [/1”10';0 - AnZO-;Zo — An3
T I [ Anex = Anoy — An(Dx = DY)

(26)

Egs. (18) and (26) show that, in contrast to vanishing D? for impermeable cracks, permeable and the Hao
and Shen type cracks generally result in non-zero crack face electric displacements. Both far field me-
chanical and electric loading may contribute to D?. Note Eq. (26) is a quadratic of D? (except for &, = 0),
and two real or complex roots may exist. D! should be uniquely determined for a given piezoelectric
material and loading. This issue was not discussed by Hao and Shen (1994).

If the remote electric loading is an electric field instead of an electric displacement, D° in crack solutions
given by Egs. (18), (24)—(26) is replaced by,

i 1
DX = ————[dnEX — dE” + (byndii — bidin)oly + (bndii — biadin)oZ + (bydy — bizdn)oy |
d11d22 - d]z
(27)
Eq. (27) indicates that loading ¢2° and E2° may have an effect on the crack solution.
Along the self-similar plane of a crack (6 = 0),
o 0) = Y% g n0) = Yo% pr0) = Y (Dx — ) (28)

\/Z zz) \/27 xz? \/Z

Stress intensity factors Kj, Ky and electric displacement intensity factor Kp can be expressed as (Suo
et al., 1992),

Ky = Vrac’; Ky = Vmas?; Kp = v/na(D>* — DS) (29)

Eq. (29) shows that K7 and Kj; are identical for the three types of electric boundary conditions, but K, is
different.

Energy release rate on the crack line (6 = 0) can be obtained by using crack closure integral. For pie-
zoelectric problems, the total energy is the sum of mechanical (strain) energy and electrical energy.
Suppose a crack extends by a small amount da, the total energy release rate can be expressed as,

da
G = lim —— / {0(x, 0)ut(8 — x, £7) + D.(x, 0)b(8a — x, £7)} dix (30)
sa—0 20a J,

where i = x, z; u;(8a — x,+7n) = w;(da — x, ) — u;(da — x, —7) denotes displacement jump across the crack
(COD); ¢(da — x, £m) denotes electric potential jump; the first part of the integral contributes to the me-
chanical energy release rate (GM), the second part to the electric energy release rate (GF), and the total
energy release rate G = GM + GE.
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In the case of far-field uniform stresses and electric displacements (6%, 62°, ¢2° and D°, D°),

zz’

3 3 3
—Im Z @i (6)* + Im Zp,,A,,z(afj)z +Im Z(q,,/l,,z — )00

+Imzpn n30- D% DO +Imzqn rﬂo-zz(D;C DO) (31)

n=1

n=1

GE’;“[Ist,, 03 (DX — DY) +Ist,, 00 (D® — D) +Imzs,, (DX — DY

(32)

Note the appearance of terms such as ¢2°¢% and ¢2°(D — D?) in Egs. (31) and (32) are due to the si-
multaneous presence of 627, 622 and D°. If ¢2° is the only non-vanishing far-field mechanic loading, Egs.
(31) and (32) give the energy release rates for Mode I crack problems.

Energy release rates are available for an impermeable crack perpendicular to the poling direction (f = 0)
in PZT-4 and PZT-5H (Park and Sun, 1995a; Pak, 1992; Zhang et al., 1998). Setting f = 0 and using the
material properties given in Appendix A, GM and G calculated by Egs. (31) and (32) are identical (up to the
numerical accuracy) to the results reported in literature.

Hoop stress at the crack tip is another important parameter in fracture mechanics, especially for brittle
solids. It can be shown that,

3
= V7 A0 — A,50%° — A,5(DF — D)) (cos 0 + _sin 0)*2 33
000 \/_r Z 1 20 3( )]( i ) (33)

=1

4. Numerical results and discussion

Numerical results are presented to portray the effects of electric boundary conditions and crack orien-
tation on fracture parameters such as field intensity factors, energy release rates and hoop stress. The role of
an applied electric field is examined. The medium within a crack is a vacuum with &, = gy = 8.85 x 10712 C?/
Nm?. Plane strain conditions are assumed. Two piezoceramics, namely PZT-4 and PZT-5H, are used in the
numerical study.

The solution for D? (normal electric displacement on crack faces) obtained from Eq. (26) is discussed
first. Eq. (26) generally has two real or complex roots for D?, while only a real value is physically admissible.
Numerical studies show that the discriminant of Eq. (26) are positive for all considered cases. Hence two
distinct real roots exist. Let root 1 and root 2 denote the roots with positive and negative signs before the
discriminant, respectively. Table 1 presents the two roots (i.e. D?) for a crack perpendicular to the poling
direction, under applied stress ¢2° = 1.0 MPa and different applied electric displacements (D = 2.0 x
10~* C/m?, 0 and —2.0 x 10~* C/m?). For PZT-4, the three cases of electric displacement loading result in
identical values for root 1 and distinctly different values for root 2. It is unlikely that electric loading has no
effect on the crack face electric field under the boundary condition given by Eq. (21). This suggests that root
1 may not be admissible. The results for PZT-5H is similar to those of PZT-4. Another evidence of ad-
missibility of root 2 comes from Hill’s boundary element results (Hill, 1997). Under the same conditions as
in Table 1, Hill performed iterations based on Eq. (21) to compute D? for a penny shaped crack in PZT-4.
The final converged values are unique and are closer to root 2 in Table 1. Table 2 presents the strain energy
release rate (GM) and the total energy release rate (G) for a Hao and Shen type crack in PZT-4 (f = 0)
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Table 1
Normal electric displacement on crack faces based on Eq. (26) (f =0)
Loading (¢ = 1.0 MPa) PZT-4 PZT-5H
D? (root 1) D? (root 2) D’ (root 1) D’ (root 2)
Dx*=20x10"* 3.598 x 1072 —5.173 x 1073 3.241 x 1072 —7.547 x 1073
DX =0.0 3.598 x 1072 —2.460 x 1074 3.323 x 1072 —2.663 x 107*
DX =-20x10"* 3.598 x 1072 —4.403 x 107 3.322 x 1072 —4.573 x 107*
Table 2
Energy release rates based on Eq. (26) for a crack in PZT-4 (f = 0,E* = 0)
Loading (MPa) GM (root 1) GM (root 2) G (root 1) G (root 2)
62 =0.0 0.0 0.0 —1.677 x 10° 0.0
6 =02 —2.431 x 10? 1.451 —1.697 x 10° 1.452
62 =05 —6.078 x 102 9.070 —1.728 x 10° 9.070
6 =08 —9.727 x 10? 23.217 —1.759 x 10° 23.224
o =10 -1.216 x 10 36.274 —1.780 x 10° 36.287

zz

under pure mechanical loading ¢2° (MPa). It is found that far field tension (including zero) results in non-
positive GM and negative G corresponding to root 1. Again, this is physically unrealistic. The case of f # 0°
is also examined, and the behavior of roots is similar to § = 0. Therefore, it can be concluded that the
admissible root of Eq. (26) is the one that has a negative sign before the discriminant.

It is important to check the condition for an open crack as past studies neglected this aspect. For an open
crack, the z-component of crack opening displacements given by Eq. (25) should not be negative. Obvi-
ously, for a given far field tensile stress, permeable cracks (Eq. (19)) meet this condition regardless of the
value of applied electric field. A Hao and Shen type crack is found to be open under an applied electric field
or a tensile stress, irrespective of the electric field direction and crack orientation. An impermeable crack
remains open under a pure positive electric field. Crack closure occurs under a pure negative electric field
except when f = 90°. Under combined tension and negative electric field, a critical value of load ratio
(E> /a2 Vm/N) corresponding to crack closure exists for different crack orientations. The critical values of
load ratio for PZT-4 are 0.1026, 0.1060, 0.1150 and 0.1420 for f = 0°, 30°, 45° and 60°, respectively. A
crack remains open only for load ratios that are less than the critical values. The condition of an open crack
is satisfied by all cases considered in the ensuing computations.

Fig. 3 shows Kp/+/a (C/m?) under varying electric field for different electric boundary conditions and
06X = 0.6 MPa. Three crack orientation angles, i.e. f = 0°, 30° and 90° in PZT-4 are considered. As ex-
pected, Kp is independent of electric loading for a permeable crack. A relatively weak effect of f on Kj is
observed for impermeable cracks, and K, varies linearly with £2°. When f# = 0° or 30°, the Hao and Shen
type cracks and permeable cracks have nearly identical Kp, which are significantly different from Kp of
impermeable cracks. When f = 90°, impermeable cracks and the Hao and Shen type cracks have identical
Kp, whereas permeable cracks show vanishing Kp.

In the case of the Hao and Shen type cracks, K corresponding to f = 90° is significantly different from
that for  # 90°. This behavior is due to the quadratic term Im 22:1 q. A3 appearing in Eq. (26). For PZT-
4 when f = 90°, this term is vanishingly small. For example, the values are 2.214 x 1072, 1.918 x 1072,
3.845 x 1073, 1.932 x 1074, —6.720 x 102 for B = 0°, 30°, 80°, 89.5° and 90° respectively. The linear term
of Eq. (26) is generally negative. Since the admissible root is the one that has a negative sign before the
discriminant, D? ~ 0 is obtained for § = 90°. As a result, the Hao and Shen type cracks based on Eq. (21)
have identical behavior as impermeable cracks. This observation is also confirmed by numerical results for
energy release rates and hoop stresses given below.
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Fig. 3. Variation of electric displacement intensity factor with electric field for a crack in PZT-4 under tensile stress (62 = 0.6 MPa).

Fig. 4 shows the strain energy release rate GM/a (N/m?) for PZT-4 under varying electric field and
02 = 0.6 MPa. Five values of crack orientation angle, i.e. f = 0°, 30°, 45°, 60° and 90°, are considered. A
strong influence of crack orientation on GM is observed. For all three types of electric boundary conditions,
GM decreases as 8 becomes larger except for an impermeable crack and E* < —10 kV/m. When applied
loading is pure mechanical (E* = 0), GM is independent of electric boundary conditions for any f. As
expected, the applied electric field has no effect on GM for a permeable crack. For an impermeable crack,
GM increases with E° when f # 90° and has no effect on GM when f = 90°. The dependence of GM on E*
decreases as 8 increases. Both permeable cracks and the Hao and Shen type cracks have nearly identical GM
values that are practically independent of £°. Strain energy release rate of a crack parallel to polarization is
independent of E2° and electric boundary conditions.

Total energy release rate G for a permeable crack is identical to GM shown in Fig. 4. G/a for im-
permeable cracks and the Hao and Shen type cracks based on Eq. (21) are presented in Fig. 5. For
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Fig. 4. Variation of strain energy release rate with electric field for a crack in PZT-4 under tensile stress (¢ = 0.6 MPa).

impermeable cracks, an applied electric field tends to decrease G with increasing 8. For the Hao and Shen
type cracks, an electric field has no effect on G when f # 90°. Again, the Hao and Shen type cracks and
impermeable cracks show virtually identical G values when 5 = 90°. Total energy release rate is not sym-
metric with respect to £2° for impermeable cracks when remote tension is non-zero.

Based on the criterion of strain energy release rate, an increasing f§ generally increases the fracture load
for all three types of electric boundary conditions. An applied electric field has no effect on fracture of
impermeable cracks parallel to the poling direction (f = 90°), and permeable and the Hao and Shen type
cracks of arbitrary orientations. When f £ 90°, a positive electric field tends to enhance extension of an
impermeable crack and a negative one tends to retard it. Applying the criterion of total energy release rate,
the fracture load increases with increasing f regardless of electric boundary conditions, which is similar to
the behaviour of GM. For arbitrarily oriented impermeable cracks and the Hao and Shen type cracks
perpendicular to the poling direction, both positive and negative electric fields tend to impede crack growth.
For the Hao and Shen type cracks not perpendicular to the poling direction, an applied electric field has no
influence on their fracture behavior.
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Fig. 5. Variation of total energy release rate with electric field for a crack in PZT-4 under tensile stress (¢2° = 0.6 MPa).

Hoop stress distribution at a crack tip is now considered. Under pure tensile loading ¢2°, hoop stress
profiles are found to be virtually independent of electric boundary conditions and crack orientation angle
f. Numerical results are not shown for brevity. Fig. 6 shows the variation of normalized hoop stress
V/2r/acg/E>® (N/Vm) under a pure positive electric field £ in PZT-4. For a permeable crack, a pure
electric field has no contribution to hoop stress, which is obvious from Eqs. (17) and (18). For an imper-
meable crack, hoop stress distribution depends significantly on 5. Compressive hoop stresses are observed
at the entire crack tip when f = 0°, while tensile stresses are observed when f = 60°. Both compressive and
tensile stresses exist for f = 30°, 45° and 90°. Again, a Hao and Shen type crack has practically same gy as
a permeable crack for f # 90°, and identical ggy as an impermeable crack when f§ = 90°.

Following the criterion of maximum hoop stress, fracture initiation and crack branching are generally
expected for an impermeable crack, with the exception of the case § = 0°. For a Hao and Shen type crack,
crack extension and branching are expected only when the crack is perpendicular to the poling direction.
The observation that impermeable cracks and the Hao and Shen type cracks may deviate from a straight
line for certain crack orientations is consistent with the experimental phenomenon of crack skewing
(McHenry and Koepke, 1983).

5. Conclusions

Removing the assumption of an impermeable void boundary and the restriction on void orientation, a
new analytical solution is obtained for a piezoelectric plane with an elliptical void. It is shown that the exact
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Fig. 6. Variation of crack tip hoop stresses in PZT-4 under applied positive electric field.

crack boundary condition solution reported previously by others is actually the solution for a permeable
crack. A unified formulation accounting for three existing types of electric boundary conditions is devel-
oped for arbitrarily oriented cracks. It is found that electric boundary conditions practically have no effect
on fracture parameters under pure mechanical loading. The Hao and Shen type cracks and permeable
cracks with f§ # 90° have virtually identical fracture behavior that is practically independent of applied
electric loading. However, for cracks parallel to the poling direction, the Hao and Shen type cracks behave
as impermeable cracks. A substantial dependence of the crack tip hoop stress on crack orientations is noted
for impermeable cracks. Tensile hoop stresses are observed for f # 0°. The criterion of maximum hoop
stress can explain experimentally observed crack skewing. Energy release rates generally decrease with
increasing 5. Energy release rates along the self-similar line, being not able to account for crack deviation,
may not qualify as potential fracture criteria. A study of energy release rates for arbitrary crack extension
directions would be useful.
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Appendix A

The constitutive equations for z'-polarized ceramics in the x'y’z’ system can be expressed as (Parton and
Kudryavtsev, 1988)
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(o] = [elle] —[eI"[ET; D)= [e][€] + [I[E (A.1)

where a prime denotes variables with respect to the x'y'z’ system; ¢;;, e; and ¢; denote elastic constants,
piezoelectric constants and dielectric constants, respectively.
u, are the roots of the characteristic equation,

P(u) = Li(u)ls(w) + B(p) =0 (A2)
with

Li(p) = di@? — 2dyop + do; L(u) = b — (b + 513),u2 + (biy + b)) — by

l3(ﬂ) = 6111#4 - 26113#3 + (2012 + 6133)112 — 2au+ ap

The roots (u) of Eq. (A.2) are complex with three pair wise conjugates, and they are generally distinct. Note
i, (n=1,23) in Eq. (2) are chosen such that their imaginary parts are positive.
The constants d,, p,, ¢., s, and ¢, in Eq. (2) are

On = La(p,)/ 1 (1) (A3)
Do = anf + an — apspt, + 8,(biip, — ba) (A4)
qn = (alzﬂi + axn — axnp, + 0,bip, — 0,b2)/ 1, (A.5)
Sp = bu,uﬁ + bio — bisp, — 0,(duip, — di2) (A.6)
Ih = bzmi + by — bosp, — u(diopt, — da) (A7)

The material properties of PZT-4 and PZT-5H based on Eq. (A.1) are given below. PZT-4 (Park and
Sun, 1995b):
e =139 x 10" N/m?, ¢, =7.78 x 10" N/m?,  ¢j3 = 7.43 x 10" N/m?
c33 = 11.3 x 10" N/m?, Caq = 2.56 x 10" N/m?
e; = —6.98 C/m?, ey =13.84 C/m?, e5 = 13.44 C/m?
11 = 6.00 x 107 CV/m, £33 =547 x 107 CV/m

PZT-5H (Pak, 1992):

e =126 x 10" N/m?, ¢, =5.5x 10" N/m?, ¢35 = 5.3 x 10" N/m?
c33=11.7x 10" N/m?, ¢y =3.53 x 10" N/m?

e3 = —6.5C/m?, e =233C/m? e5=17.0C/m’

e =151 <107 CV/m, &3 =130x 107" CV/m

References

Chen, T., Lai, D., 1997. An exact correspondence between plane piezoelectricity and generalized plane strain in elasticity. Proceeding
of the Royal Society, London Series A, vol. 453, pp. 2689-2713.

Deeg, W.F., 1980. The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. Thesis, Standford University,
USA.

Dunn, M.L., 1994. The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Engineering
Fracture Mechanics 48, 25-39.



7658 X.-L. Xu, R K.N.D. Rajapakse | International Journal of Solids and Structures 38 (2001) 7643-7658

Gao, C.-F., Fan, W.-X_, 1999. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. International
Journal of Solids and Structures 36, 2527-2540.

Hao, T.-H., Shen, Z.-Y., 1994. A new electric boundary condition of electric fracture mechanics and its applications. Engineering
Fracture Mechanics 47, 793-802.

Hill, L.S., 1997. Three-dimensional piezoelectric boundary elements. Ph.D. Thesis, Purdue University, USA.

Kumar, S., Singh, R.N., 1996. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta
Materialia 44, 173-200.

Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, New York.

McHenry, K.D., Koepke, B.G., 1983. Electric fields effects on subcritical crack growth in PZT-4. In: R.C. Bradt, D.P. Hasselman, F.F.
Lange (Eds.), Fracture Mechanics of Ceramics, vol. 5, pp. 337-352.

Mikhailov, G.K., Parton, V.Z., 1990. Electromagnetoelasticity. Hemisphere, New York.

Pak, Y.E., 1990. Crack extension force in a piezoelectric material. Journal of Applied Mechanics 57, 647-653.

Pak, Y.E., 1992. Linear electro-elastic fracture mechanics of piezoelectric materials. International Journal of Fracture 54, 79-100.

Park, S.B., Park, S.S., Carman, G.P., Hahn, H.T., 1998. Measuring strain distribution during mesoscopic domain reorientation in
ferroelectric material. Journal of Engineering Materials and Technology, Transactions of ASME 120, 1-6.

Park, S.B., Sun, C.T., 1995a. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society 78, 1475-1480 (and
correction, 1996).

Park, S.B., Sun, C.T., 1995b. Effect of electric fields on fracture of piezoelectric ceramics. International Journal of Fracture 70, 203—
216.

Parton, V.Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronaunt 3, 671-683.

Parton, V.Z., Kudryavtsev, B.A., 1988. Electromagnetoelasticity. Gordon and Breach Science Publishers, New York.

Polovinkina, I.B., Ulitko, A.F., 1978. On the equilibrium of piezoceramic bodies containing cracks. TN 18, 10-17.

Singh, R.N., Wang, H., 1995. Adaptive materials systems. In: G.P. Carman, C. Lynch, N. R. Scottos (Eds.), Proceedings of AMD-vol.
206/MD-vol. 58, ASME, pp. 85-95.

Sosa, H.A., 1991. Plane problems in piezoelectric media with defects. International Journal of Solids and Structures 28, 491-505.

Sosa, H., Khutoryansky, N., 1996. New developments concerning piezoelectric materials with defects. International Journal of Solids
and Structures 33, 3399-3414.

Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and
Physics of Solids 40, 739-765.

Xu, X.-L., Rajapakse, R.K.N.D., 1999. Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics. Acta
Materialia 47, 1735-1747.

Zhang, T.-Y., Qian, C.-F., Tong, P., 1998. Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material. International
Journal of Solids and Structures 35, 2121-2149.

Zhang, T.-Y., Tong, P., 1996. Fracture mechanics for a mode III crack in a piezoelectric material. International Journal of Solids and
Structures 33, 343-359.



